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Let the left and right derivatives of f at x be A and B respectively.
Then by definition there exists § > 0 such that
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Taking L = max{|A|, |B|} + 1, we must have
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A counter example is the function f: [—1,1] — R defined by
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f is Lipschitz continuous at 0 (with L = 1), but neither its left nor
right derivative exists at 0.



2. For0<r<1.
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where in the second last equality, we adopt the change of variable ¢t — z+y
and make use of 27 periodicty.
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Therefore,
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3. For d € N, let S; be the set of polynomials of degree less than d and with
rational coefficients. Since there are only finite many coefficients, Sy is
countable. Now let S = U3 ;5S4 be the set of polynomials (of any degree)
with rational coeffcients, then S is also countable. We now claim that S
is the required subset.

Let f € Cla,b] and € > 0, we know by weierstrass approximation theorem
that there exists a polynomial ¢’ = ¢, + ¢jx + - -+ + ¢/,z™ such that
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Now choose rational numbers cg, ¢1, . . . ¢, such that |¢; — ¢f| max |a*|, |b*] <

(n+1) Define g = ¢y + c1x + -+ - + cpx™, then g € S, and
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. Note that 2% — 7z is an odd function, so a,, = 0 for n > 0.

2 ™
by, = 7/ (23 — n%z) sin nxdr
T Jo
2 [ (2® —n?x)cosna N (322 — 7?) sinnx N 6z cosnx  6Gsinnz]”
o n n? n3 n*t
12
(1

Therefore,
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On the other hand,
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Therefore, by Parseval’s identity,
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